expyfun.analyze.rt_chisq#
- expyfun.analyze.rt_chisq(x, axis=None, warn=True)[source]#
Chi square fit for reaction times (a better summary statistic than mean)
- Parameters:
- xarray-like
Reaction time data to fit.
- axisint | None
The axis along which to calculate the chi-square fit. If none,
x
will be flattened before fitting.- warnbool
If True, warn about possible bad reaction times.
- Returns:
- peakfloat | array-like
The peak(s) of the fitted chi-square probability density function(s).
Notes
Verify that it worked by plotting pdf vs hist (for 1-dimensional x):
>>> import numpy as np >>> from scipy import stats as ss >>> import matplotlib.pyplot as plt >>> rng = np.random.RandomState(0) >>> x = np.abs(rng.randn(10000) + 1) >>> lsp = np.linspace(np.floor(np.min(x)), np.ceil(np.max(x)), 100) >>> df, loc, scale = ss.chi2.fit(x, floc=0) >>> pdf = ss.chi2.pdf(lsp, df, scale=scale) >>> plt.plot(lsp, pdf) [<matplotlib.lines.Line2D object at ...>] >>> _ = plt.hist(x, density=True)